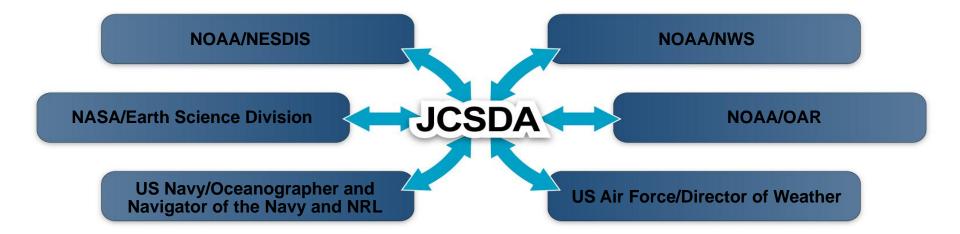


The Joint Center for Satellite Data Assimilation


Overview of activities

Lars Peter Riishojgaard, Director

- Current activities of the JCSDA partners; highlights
- Joint Center computing
- Future Plans
 - External Research, Workshops, Summer Colloquium,...

JCSDA Partners, Vision, Mission

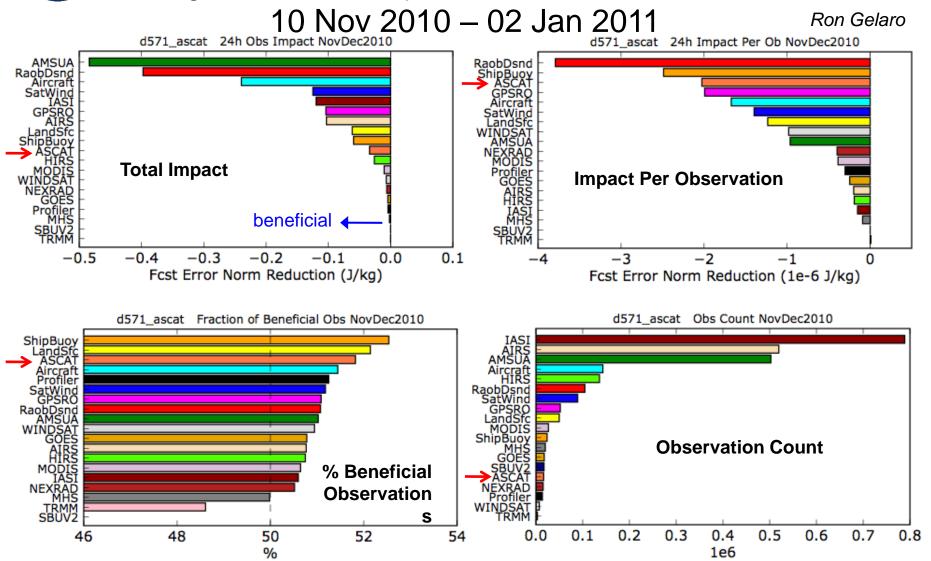
Vision:

An interagency partnership working to become a world leader in applying satellite data and research to operational goals in environmental analysis and prediction

Mission:

...to accelerate and improve the quantitative use of research and operational satellite data in weather, ocean, climate and environmental analysis and prediction models.

GMAO


- Atmospheric Data Assimilation
 - Preparation for NPP OMPS/LP (see Philippe Xu's poster)
 - Preparation for NPP working with NESDIS and CRTM group to prepare GSI for ATMS and CrIS (*Will McCarty*)
 - OSSEs to prepare for Aeolus (Will McCarty, see Ron Errico's presentation)
 - Developing a real-time MLS radiance assimilation for the GSI (Kris Wargan)
 - Observing System Impact with Adjoint Tools (Ron Gelaro)
- Aerosol Model and Assimilation (see Arlindo da Silva's presentation)
 - Transitioned GOCART to NCEP/GFS
 - Testing assimilation of MODIS AOT with GEOS-5
- Land data assimilation soil moisture (SMAP), Land surface temperature, snow, terrestrial water storage (see Rolf Reichle's presentation)

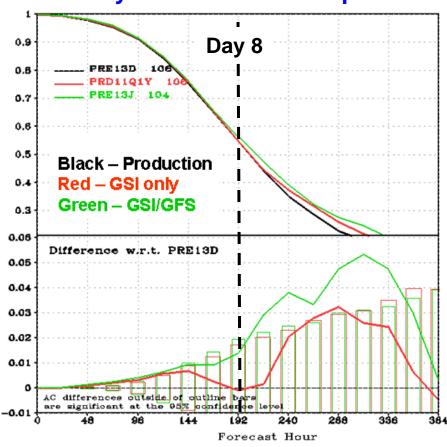
LIS (Hydrological Sciences Branch, collaboration with AFWA, NOAA/NCEP, GMAO)

- Land Information System (see Christa Peters-Lidard's presentation)
 - Coupling with CRTM to improve satellite data assimilation for the atmosphere
 - Assimilation of multi-sensor snow (see Sujay Kumar's presentation)

Measuring the impact of ASCAT

z Average Observation Impact Statistics from GEOS-5 Forecasts

Adjoint-based estimate of 24-hr global forecast error reduction in wind, temperature and surface pressure combined as energy (J/kg), from sfc-150 hPa


NOAA/NCEP Global Data Assimilation System

Upgrade Implemented 9 May 2011

- Analysis Changes
 - Recomputed background errors
 - New version of CRTM 2.0.2
 - Improved Field of View calculation
 - Updates for thinning and collocation calculations
 - QC and obs. error and data handling updates for
 - OMI
 - AMSU-A (channel 5)
 - ASCAT
 - SBUV/2 ozone
 - Ocean buoys
 - New analysis options (useful for next round of development)
- Model Changes
 - Thermal roughness length upgrade (X. Zeng, U. Arizona)
 - Stratospheric tuning

5-Day 500MB NH AC 00Z Cycles 16 June-29 Sept 2010

Planned Upgrade of NOAA/NCEP GDAS

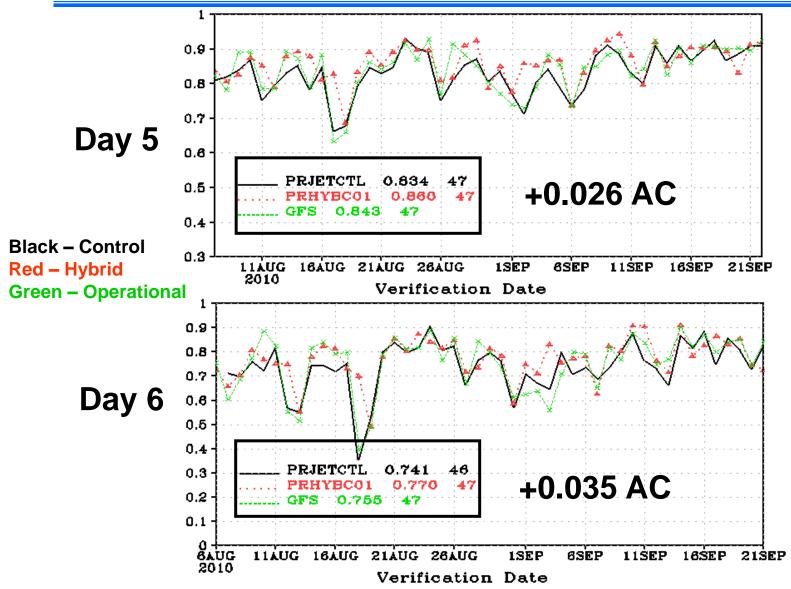
Aggressively developing a Hybrid EnKF-3DVar system

- > Joint Project: NOAA (ESRL, NCEP), NASA GMAO, Univ OK
- Others plan to support regional/hurricane applications—AOML, PSU
- **Extensive development testing on ESRL Boulder machine**
- System ported back to NCEP for pre-implementation testing (summer 2011)
- Implementation will require creative computational resource planning

Candidate Components in Upgrade Include:

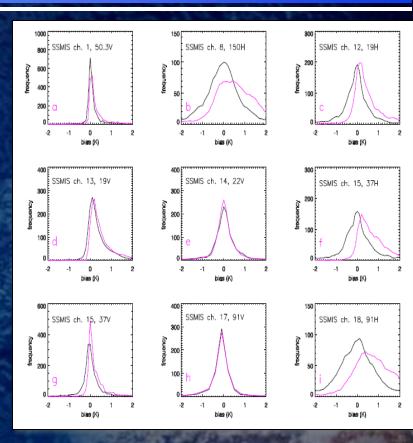
- GPS RO bending angle rather than refractivity
- Inclusion of compressibility factors for atmosphere
- Retune SBUV observation errors
- Update radiance usage flags
- Prepare for NPP and Metop-B
- Add GOES-13 data
- Add Severi CSBT radiance product
- Modification of Radiance bias correction
- Satellite monitoring stats code included in Ops.
- Improved moisture analysis and add more IASI and AIRS moisture channels
- New Sat wind data and QC
- NSST analysis in GSI

Development of GSI Hybrid Var-EnKF


- ▶ Test Period: 01 Aug to 22 September 2010
- Deterministic Forecasts: Operational GFS @ T574L64
- Ensemble Configuration:
 - 80 ensemble members
 - **GSI** for observation operators
 - T254L64 operational GFS
- Initialized 00 UTC 15 July 2010 from interpolated GEFS members
 - allowed over 2 weeks spin-up
- Assimilate all operational observations
 - Includes early (GFS) and late (GDAS/cycled) cycles
 - Operational prepbufr files (no prep/additional qc)
- Dual-resolution/Coupled
 - **High resolution control/deterministic component**
 - **Includes TC Relocation on guess**
 - **Ensemble is recentered every cycle about hybrid analysis**
 - Throw out EnKF analyis mean
- Bias correction (satellite) coefficients come from GSI/VAR
- Minimal tuning done for hybrid
 - 1/3 static B, 2/3 ensemble

500 hPa SH AC Time Series

Test Period: 6 Aug to 21 Sept 2011

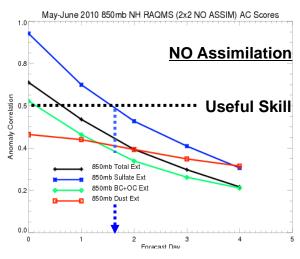


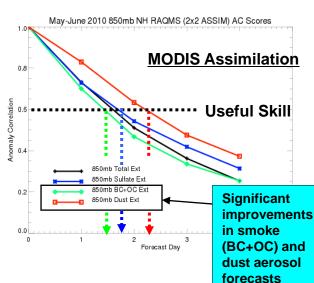
Overview of NESDIS Satellite Data Assimilation Activities (1/2)

- CRTM Science Activities [Han et al].
 - ✓ NLTE implementation (non-local thermodynamic equilibrium)
 - ✓ Improved Ocean Microwave Emissivity Model (FASTEM4)
 - ✓ Aerosol optical depth module for air quality forecasting (not released yet)
 - ✓ Extension of CRTM for visible channels, including imager of GOES-11, -12, -13, -14, -15, mt2, VIIRS and foreign sensors.
- NPP/JPSS Readiness. Proxy Data (in BUFR format) available to NWP centers- [Wolf et al.]

✓ CrIS, ATMS, VIIRS and OMPS

- GFS/GSI AIRS V5 Temperature Retrieval Assimilation Experiments – [Pierce et al.]
- IR Hyperspectral cloud-cleared radiances
 (AIRS, IASI) [Barnet et al.]
- Microwave cloudy radiance data in nonprecipitating clouds (AMSU-A) - [Kim et al.]

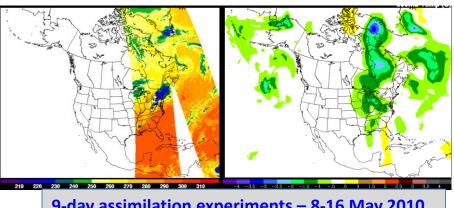


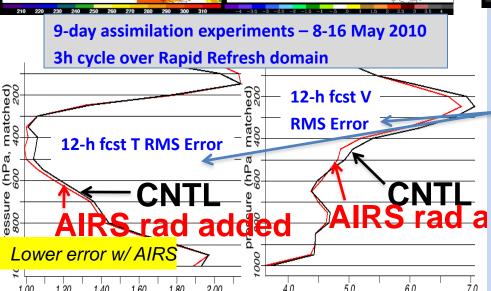

Histograms of the differences between CRTM-simulated and observed brightness temperatures for six SSMIS channels. Red curve – CRTM with FASTEM-3;

black curve - CRTM with FASTEM-4

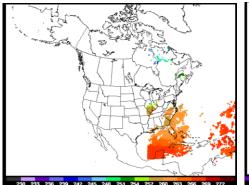
Overview of NESDIS Satellite Data Assimilation Activities (2/2)

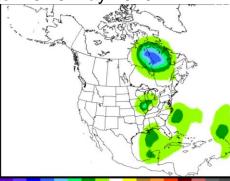
- MiRS 1DVAR Science Activities— [Boukabara et al.]
 - √ Potential to be used as QC and/or pre-processor for DA
 - ✓ Applicable to NOAA/METOP AMSU, MHS, SSMIS, TRMM/TMI, ATMS
- NAM-CMAQ GOES Column Ozone Assimilation [Pierce et al.]
- Contributions to GOES aerosol assimilation into air quality forecasting model – [Kondragunta et al.]
- Assessment of Global Aerosol Forecast Skill (MODIS AOD Assimilation) of RAQMS – [Pierce et al.]
- Use of Global Biomass Burning Emissions from Geo Satellites in GFS-GOCART – [Kondragunta et al.]
- Water Vapor Data Assimilation in GDAS [Jung et al.]
- Soil moisture Assimil. in GFS using Kalman Filter-[Zhan et al.]
- NPP/JPSS & GOES-R cal/val readiness and OSSE Simulations -[Weng et al.]


Preliminary results on assimilation of AIRS radiance and retrieval data in the Rapid Refresh (1h cycle, WRF/ARW, GSI)

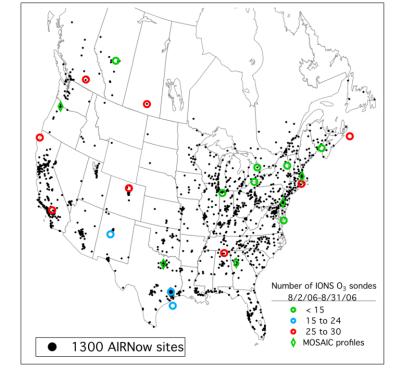


Haidao Lin, Steve Weygandt, Ming Hu, Stan Benjamin NOAA/ESRL/GSD Assimilation and Modeling Branch


Tim Schmit (NOAA/NESDIS/STAR, Madison, WI), Jinlong Li, Jun Li (CIMSS, University of Wisconsin-Madison See Haidao Lin JCSDA poster


Radiance Assimilation Results – 6z 8 May 2010

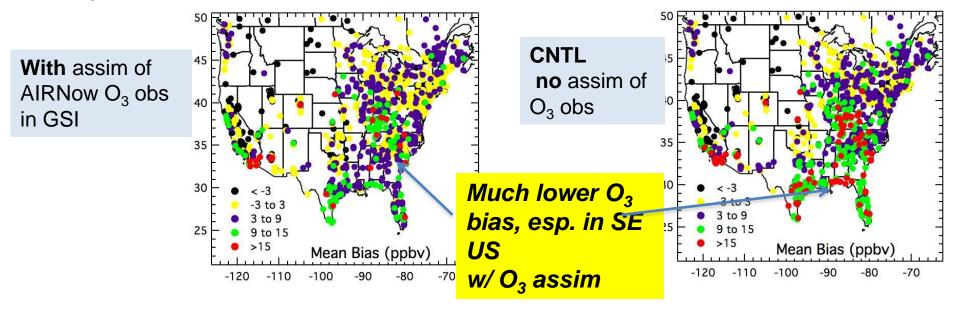
Retrieval Assimilation Results – 6z 8 May 2010


SUMMARY AND FUTURE WORK

Preliminary result:

- 1. AIRS data has slight positive impact for short-term predictions in 3h cycled Rapid Refresh, more for radiances.
- 2. Bias correction necessary for positive impact for radiances, not performed yet for retrievals.
- 3. Tuning of horizontal/vertical thinning necessary for retrieval assim.

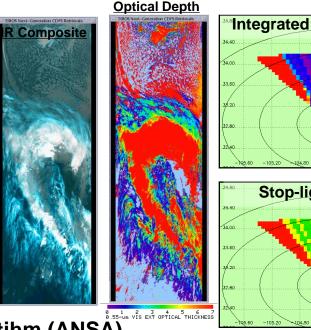
Plans:

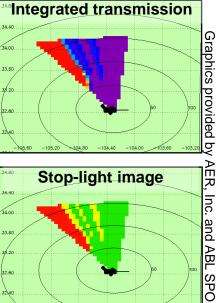

- Continue evaluation of impact of AIRS radiance and retrieval data with new thinning & bias correction designs
- Investigate current cloud contamination detection
- Run 1-h cycle tests, test different AIRS time windows
- More cases → operational use of AIRS data in RR@NCEP

O₃ and Particulate Matter Data Assimilation from Sfc Obs with WRF/Chem and GSI

-Mariusz Pagowski (+ Grell, McKeen, Peckham, Devenyi) – NOAA-ESRL Quart.J.Roy.Meteor.Soc. – 2010 (Oct)

O_3 bias (ppbv) – 24h (next day) forecast valid 00z - 2-31 Aug 2006

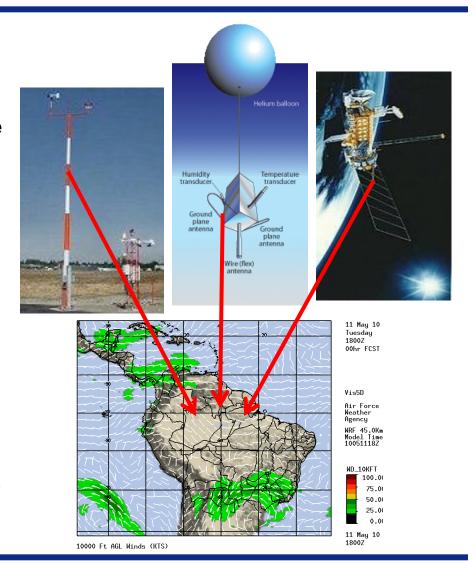

Improved Satellite DA in Cloud and Land Surface Modeling


Integrating cloud optical properties into cloud

analysis/forecasting models

Up to 13 channels used in algorithms

- Superior cloud property outputs
- Leveraged financial support from Airborne Laser Program
- IOC fall 2011
- Improve Surface Characterization
 - Land Information System (LIS)
 - Higher resolution, more efficient computation, multi-grid configuration
 - Implementing AFWA-NASA Snow Algorithm (ANSA) assimilating MODIS data
 - Leverages multi-agency investment
 - IOC summer 2011



WRF DA Initiatives

- Pursuing GSI Transition to replace WRFVAR (IOC spring 2012)
 - Leveraging mature 3DVAR
 assimilation system with advance
 satellite radiance assimilation
 capability
- Working receipt of satellite radiance data unique to GSI
- Pursue 4DVAR as enabler to assimilate "cloud-filled" properties vice only "cloud-free" satellite radiances
- Hybrid DA capability (ETKF with 3DVAR or 4DVAR) to leverage ensemble DA capabilities
- Investigate the utility of full Ensemble Kalman Filtering DA technique with respect to 4DVAR

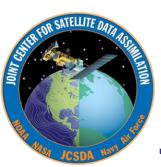
Recent Highlights of Navy Data Assimilation NAVDAS-AR (4D-Var)

- * NAVDAS-AR (strong constraint, CRTM) Operational Sept, 2009
- **★New Satellite Data sources added or improved with NAVDAS-AR**
 - ✓ IASI, AIRS assimilation added, refined and skill improved; NOAA-19 AMSU-A
 - ✓ DMSP F16, F17, F18 UPP operational; Assimilating radiances, surface winds, TPW, ice
 - ✓ ASCAT, WindSAT (winds and TPW)
- **★T319L42 NOGAPS/NAVDAS-AR Operational May, 2010**
- **★Subsequent sensors added to NAVDAS-AR**

NOGAPS

- ✓ GPS RO bending angle <u>Operational Sept, 2010*</u>
 - COSMIC, GRAS, GRACE-A, Terra SAR-X, SAC-C, C/NOFS
- ✓ RARS ATOVS retransmission data Operational Sept, 2010*
- ✓ Combined LEO/GEO atmospheric motion vectors (AMV) Operational Nov, 2010*
- ✓ Hourly geostationary winds (AMV) from MTSAT, Meteosat and GOES-W Operational Dec, 2010*
- MHS and SSMIS 183 GHz channel assimilation Operational Jan, 2011
- Sensors and enhancements to be added to NAVGEM
 - Variational bias correction
 - > SBU/V and MLS ozone
 - HIRS and Geostationary Clear-Sky Radiance
 - Weak-constraint formulation
 - > Flow-dependent background errors

Recent Highlights of Navy Data Assimilation NAVDAS (3D-Var)



New Satellite Data Sources added to NAVDAS

- ✓ ASCAT scatterometer
- ✓ WindSat wind vectors and TPW, new WindSat retrieval algorithm (NRL DC)
 COAMPS®
- ✓ Mid-level Geostationary winds
- ✓ MODIS and AVHRR polar winds
- ✓ Combined LEO/GEO winds
- ✓ AMSU-A Satellite Radiances, including RARS

***Sensors still to be added to NAVDAS**

- ✓ IASI, AIRS and SSMIS radiances
- ✓ MHS and SSMIS 183 GHz channel assimilation

JCSDA Computing

- Lack of JCSDA computing "major obstacle to success" (JCSDA Advisory Panel Jan 2009)
- Review of past JCSDA-funded external projects revealed lack of computer resources as significant limitation
- R2O requires O2R
 - Research community needs access to operational codes and adequate computer resources in order to help
- New resources made available

on NOAA backup computer

- However, no projected growth on NOAA R&D computer
- NASA has procured JCSDA supercomputer resource to test algorithms in the context of operational partner systems
 - IBM Linux cluster; 576 Intel
 Westmere processors; 200 Tb of storage
 - Located at GSFC and operated by NCCS for the Joint Center
 - NOAA-funded expansion in progress!

JCSDA computer at GSFC

- Hostname jibb ("Joint Center in a Big Box")
- Open to all JCSDA projects, internal as well as external, with supercomputing needs
 - Plan is to support GDAS, GFS/GSI, WRF, GEOS-5, CRTM, MIRS and other applications relevant to JCSDA users (see presentation by E-M. Devaliere)
- Account request process relatively straightforward; approval within days
 - Request to E.-M. Devaliere or A. Pratt; approval by L. P. Riishojgaard, S. Boukabara or J. Yoe

Jibb Initial System Capabilities

- Compute IBM iDataPlex
 - 576 total cores; 6.3 TF Peak Computing
 - 48 Compute Nodes
 - Dual-socket, hex-core 2.8 GHz Intel Westmere with 24 GB of RAM
 - Quad Data Rate Infiniband Network (32 Gbps) in a 2-to-1 blocking fabric

Storage

- 8 IBM x3650 Storage Servers
- 2 IBM DS3512 Storage Subsystems
- 200 TB Total
- IBM GPFS File System
- Ancillary Nodes
 - 2 Login Nodes
 - 2 Management Nodes

Jibb Total System Capabilities (when fully built out via NOAA-funded expansion)

- Compute IBM iDataPlex
 - 3,456 total cores; 37.8 TF Peak Computing
 - 288 Compute Nodes
 - Dual-socket, hex-core 2.8 GHz Intel Westmere with 24 GB of RAM
 - Quad Data Rate Infiniband Network (32 Gbps) in a 2-to-1 blocking fabric

Storage

- 8 IBM x3650 Storage Servers
- 2 IBM DS3512 Storage Subsystems
- 400 TB Total
- IBM GPFS File System
- Ancillary Nodes
 - 2 Login Nodes
 - 2 Management Nodes

Software Stack and Responsibilities

NASA/NOAA Applications	Applications – GEOS5, GFS	SIVO, GMAO, NOAA
User Libraries	Libraries – netcdf, baselibs (GMAO)	USG, SIVO
Commercial Software	IDL (4 seats), Matlab (not installed yet)	NCCS SAs, USG
Message Passing Libraries	Intel MPI, MVAPICH (os)	NCCS SAs, USG
Tools	gcc debugger (os), other?	NCCS SAs
Compilers	Intel Compilers, gcc (os)	NCCS SAs
Resource Management	Altair PBS Pro v. 10	NCCS SAs
File System	IBM GPFS	NCCS SAs
Interconnect	OpenIB (os)	NCCS SAs
Operating System	Novell SLES Linux 11 (os)	NCCS SAs
Management Software	IBM xCAT (os)	NCCS SAs

June 1, 2011 Not for Distribution.

Colloquium and Workshops

- ECMWF-JCSDA Workshop on Clouds and Precipitation
 - ECMWF, Reading June 2010
 - Follow-on to 2006 JCSDA Workshop
 - ~60 participants (20 from the US)
 - Important topic for NWP and data assimilation in terms of products, modeling and observations
 - Preparation of NWP users for future missions (e.g. GPM)
 - Recommendations in Workshop Summary (mostly model and data assimilation system development)

- JCSDA-HFIP Workshop on Satellite Data Assimilation for Hurricane Forecasting
 - AOML, Miami, Dec 2-3 2010
 - 50+ scientists from research and operations
 - Current data assimilation systems used for hurricane prediction
 - Various types of satellite data used for hurricane prediction
 - Future directions
 - Full Workshop Report (including recommendations) available at:

http://www.jcsda.noaa.gov/mee tings_JCSDA-HFIPWorkshop2010.php

Outlook

- External Research
 - FY 2010: NOAA (FFO)
 - FY 2011: NASA (ROSES)
 - FY 2012: DoD (still in planning stages)
- Preparation for new sensors
 - NPP, ADM, SMAP, Aquarius, FY-3, ...
- Summer Colloquium
 - Training event modeled on the 2009 Summer Colloquium
- Fifth WMO Workshop on the Impact of Various
 Observing Systems on NWP, late May 2012 in the US
 (venue still TBD)

Backup slides

JCSDA History

- NASA/NOAA collaboration (Uccellini, Einaudi, Purdom, McDonald) initiated in 2000
 - Concern about US leadership in satellite data technology and instrumentation not replicated in applications, e.g. NWP
 - GMAO (DAO), NCEP and STAR (ORA)
 - Emphasis on balanced approach involving
 - Modeling
 - Computing
 - Observational data

- Inclusion of DoD (NRL Monterey and AFWA)
 triggered by IPO sponsorship of JCSDA starting in 2002
- First permanent Director hired in 2004 (John Le Marshall)
- Memorandum of Agreement signed May 2008

JCSDA Science Priorities

Overarching goal: Help the operational services improve the quality of their prediction products via improved and accelerated use of satellite data and related research

- Radiative Transfer Modeling (CRTM)
- Preparation for assimilation of data from new instruments
- Clouds and precipitation
- Assimilation of land surface observations
- Assimilation of ocean surface observations
- Atmospheric composition; chemistry and aerosol

Driving the activities of the Joint Center since 2001, approved by the Science Steering Committee

JCSDA Management Structure

Agency Executives

NASA, NOAA, Department of the Navy, and Department of the Air Force

Management Oversight Board

NOAA / NWS / NCEP (Uccellini)

NASA/GSFC/Earth Sciences Division (Hildebrand)

NOAA / NESDIS / STAR (Powell)

NOAA / OAR (Atlas)

Department of the Air Force / Air Force Director of Weather (Egentovich)

Department of the Navy / N84 and NRL (Chang,

Advisory Panel

Co-chairs: Jim Purdom, Tom Vonder Haar, CSU

JCSDA Executive Team

Director (Riishojgaard)

Deputy Director (Boukabara)

Partner Associate Directors

(Lord, Rienecker, Phoebus, Zapotocny, Benjamin)

Science Steering Committee

(Chair: Craig Bishop, NRL)

JCSDA Mode of operation

- Directed research
 - Carried out by the partners
 - Mixture of new and leveraged funding
 - JCSDA plays a coordinating role
- External research
 - Grants awarded following proposals submitted to Federal Funding Opportunity, administered by NOAA on behalf of all JCSDA partners
 - Option for contracts included for FY2011 (NASA ROSES)
 - Open to the broader research community
 - Funding awarded competitively, peer review process
- Visiting Scientist program

JCSDA accomplishments

- Common assimilation infrastructure (EMC, GMAO, AFWA)
- Community radiative transfer model (all partners)
- Common NOAA/NASA land data assimilation system (EMC, GSFC, AFWA)
- Numerous new satellite data assimilated operationally, e.g. MODIS (winds and AOD), AIRS and IASI hyperspectral IR radiances, GPSRO sensors (COSMIC, GRAS, GRACE), SSMI/S, Windsat, Jason-2,...
- Advanced sensors tested for operational readiness, e.g. ASCAT, MLS, SEVIRI (radiances),...
- Ongoing methodology improvement for sensors already assimilated, e.g. AIRS, GPSRO, SSMI/S,...
- Improved physically based SST analysis
- Adjoint sensitivity diagnostics
- Emerging OSSE capability in support of COSMIC-2, JPSS, GOES-R, Decadal Survey and other missions